
Katedra poč́ıtač̊u
ČVUT v Praze, Fakulta Elektrotechnická
Technická 2
CZ-160 00 Praha 6

Jádro verzovaćıho souborového systému

Versioning file system core

Diploma thesis

Václav JŮZA

2005-12-01

Abstrakt (česky)

Tato diplomová práce obsahuje implementaci verzovaćıho souborového sys-
tému a rozpravu o ńı. Verzovaćı souborový systém ukládá samočinně staré
verze soubor̊u, když jsou změněny a př́ıpadně může odstraňovat nejstarš́ı
verze. Nejznáměǰśı verzovaćı souborový systém je použit v operačńım systé-
mu OpenVMS. Můj souborový systém ukládá verze do podadresáře a jejich
název je plně nastavitelný. Hlavńımi př́ınosy jsou plně př́ıstupná metadata
formou soubor̊u v čistém textu, a co nejvyšš́ı nastavitelnost, ne co největš́ı
výkon.

Abstract (english)

This diploma thesis contains my implementation of versioning file system
and discuss it. Versioning file system stores automatically old versions of
files, when files are changed and possibly removes the oldest versions. The
best known versioning file system is used by OpenVMS operating system.
My file system stores versions in a subdirectory and their name is fully
configurable. Main features are fully accessible metadata in form of plain
text files and maximum configurability, not maximum performance.

Goal

Suggest and after agreement with the project leader implement a versioning
file system core, with an easy usability, management and compatibility with
existing applications keeping in mind. Use an Unix-like operating system as
a host environment.

Thanks

I would like to thank to Ing. Milan Juř́ık, my diploma thesis leader, for his
comments, proposals and help on this theme.

I thank also to all the teachers, who helped me to get many useful knowl-
edges.

I thank to my family for supporting my studying on the university as
well.

Declaration

I declare, that I have done this work independently with an contribution of
my diploma thesis leader and have listed all information sources.

I agree with use of the results by ČVUT FEL, the implementation under
the terms of the license of its files (GNU GPL and LGPL), and this text in
any way.

Contents

1 Introduction 1

2 Theory 3
2.1 Possible approaches . 3

2.1.1 How to present the versions to the user 3
2.1.2 Where to implement version system 4
2.1.3 Implementation . 5

2.2 Existing versioning solutions 5
2.2.1 OpenVMS . 5
2.2.2 FreeVMS . 7
2.2.3 CopyFS . 8
2.2.4 Version control systems 11
2.2.5 XDelta . 14

2.3 Virtual file system frameworks 17
2.3.1 LUFS . 17
2.3.2 FUSE . 17
2.3.3 PlasticFS . 19

3 Analysis 21
3.1 Discussion of the design . 21

3.1.1 How to implement the versioning system 21
3.2 The Fsfipi framework . 22

3.2.1 Standard fsfipi filters 22
3.3 Vaves, a fsfipi module for making versioned filesystem 23

3.3.1 Types of changes of files 23
3.3.2 Information to be stored 23
3.3.3 The directory structure 26
3.3.4 Removing version, files, and directories 26

4 Implementation 27
4.1 Fuse . 27

4.1.1 User’s point of view 27
4.1.2 Programmer’s point of view 29

i

4.2 The Fsfipi framework . 32
4.2.1 How does it work . 33
4.2.2 The interface . 35

4.3 Standard fsfipi modules . 38
4.4 Vaves . 38

4.4.1 Issues . 39
4.4.2 Source files . 40
4.4.3 Data structures . 41
4.4.4 Internal functions . 41
4.4.5 How does the filesystem functions work 42

5 Tests 47
5.1 The seek and write test . 47
5.2 The filesystem test . 48
5.3 The test of vaves specifics . 48
5.4 The Bonnie++ benchmark 49
5.5 The FS INOD test from the LTS 49

6 Benchmarks 50
6.1 What and how it was measured 50
6.2 Results . 52
6.3 Interpretation . 56

7 Conclusion 58

Bibliography 59

Appendixes 60

Used software 60

ii

List of Figures

2.1 Command flow on FUSE filesystem 18

3.1 Data model of the Vaves . 24

4.1 Command flow on an Fsfipi filesystem with the Vaves filter . 34
4.2 Files used in Vaves with their default names 45
4.3 Removing a version . 46

6.1 Troughput of file i/o operations on ext3 with dirindex 56
6.2 Troughput of directory operations on ext3 with dirindex . . . 56

iii

List of Tables

6.1 Throughput of operations on default ext3 53
6.2 Throughput of operations on ext3 with dirindex 53
6.3 Throughput of operations on reiserfs 54
6.4 Throughput of operations on non-empty reiserfs 54
6.5 Throughput of operations directly on filesystem 55
6.6 Throughput of operations with vaves 55

iv

Chapter 1

Introduction

The goal of this diploma thesis is to suggest and implement an versioning
file system, which could be used in the user’s home directory on an Unix-like
operating system.

The main inspiration comes from OpenVMS operating system, which
operates very well with file versioning, but has some compatibility issues
with many applications, which had to be accommodated. Number of file
version is a part of the full file name, and all the file versions are listed when
reading a directory. In addition some unaccommodated applications could
be puzzled, because the version number in the listing is separated by the
semicolon character. Due to this, it is much work to port some applications
to this system, because some of them don’t expect semicolons in the name,
and many of them determine file types from the part of the name after the
last dot. In addition, this system is not widely accessible for everyone.

The more popular way of versioning, than a versioning file system, is to
use some version control systems, such as CVS, Subversion, git, etc. Use of
them usually requires special software client, and so called repository and
working directory.

In this diploma thesis, I implemented an versioning file system (called
vaves), which should be compatible with existing applications and be as
transparent as possible and uses such a framework, that can be mounted
even by a common user. So as to make (not only) this system less system
dependent, I have also made a framework (called fsfipi) for file system filters
(i. e. set of file system manipulating functions, that implement file system
calls, which perform some action and call file system calls of the next filter),
an input filter for fuse (linux module for file systems in userspace) and an
output filter for connection to the real local file system.

In the theoretical part, I will mention possible approaches to the imple-
mentation of the versioning system, some existing versioning solutions and
frameworks, which are candidates to be used for the implementation.

In the analytical part, I will discuss the design issues of my file sys-

1

tem. I will also specify the demands on the fsfipi framework and the vaves
versioning system.

A chapter about the implementation follows. It contains a description
of use and interface of the used frameworks and the vaves versioning system
itself. In addition, there is some description about how some issues were
solved or that some issues are not solved and which way they may be solved
in the future.

The next chapter talks about how the system was being tested for quality
(i. e. does what it should), and the following chapter about testing the
throughput.

Then follow an conclusion with a summary what was managed and what
can be done better in the future, and an obligatory list of bibliography and
used software.

2

Chapter 2

Theory

2.1 Possible approaches

I will mention some base design principles of a versioning file system.

2.1.1 How to present the versions to the user

It is desirable to design the versioning file system in such a way, so that
existing applications will not be broken and can access even the old versions.

The other issue concerned is usability. Users should be able to do all the
things they used to do on an traditional file system as easy as possible and
to return to an old version of their document or to delete it or to change its
permissions if they know how to do that for regular files.

Compatibility issues include:

• An application may require, that if it create some file, it will find the
file with the same name in the directory listing (what they get using
readdir(). (This is not the case of OpenVMS).

• Applications may guess file type from the file name extension (the part
of the file name after the last dot). A version number after that may
break them.

• The file system should not produce exotic characters in file names,
which may break some applications, that are not strictly fool-proof.

Human readability and usability issues include:

• An user should recognise the original file name in the name of a version.

• Versioning should not break alphabet order of file names.

• The names should not get too long and should not include bunch of
numbers.

3

• The directory listing should not be flooded with many entries.

These issues should be taken in account when suggesting the versioning
file system.

2.1.2 Where to implement version system

The versioning system could be one of the following:

• It could be a file system implementation inside operating system kernel
or some kernel module, and implement complete file system (either fork
of existing file system, or completely new file system). For instance, in
the OpenVMS ([1],[2]) versioning is supported by its native file system.

This file system could be very fast, but users may miss some features of
other systems. If it were a fork of an existing file system, there would
be a problem of synchronisation with new releases of the original file
system.

• Add a module to some file system, which support this (i. e. reiser4)

This could be quite fast, but there would be a dependency on changing
API, and on the particular file system.

• It could be in the operating system (kernel or kernel module), but
implement only the versioning and use actual operations of another
file system as storage.

This would be slower, but does not have disadvantages of above.

• An userspace file system, mounted using an operating system kernel
module for mounting userspace or network file systems (i. e. Coda,
FUSE, LUFS.). It can use either system calls or library routines or
external programs, such as some version control system for the actual
data storing.

This would be slower, it would be less dependent on the OS kernel and
in some cases, it can run without root privileges (which are always a
security risk for such a complicated work). Once implemented in the
userspace, the file system will be able to serve not only as a storage
for the file system managed by the kernel, but as a storage for an ftp
server or some other userspace application as well.

• Using a system which substitutes library functions and system calls
by preloading a library (i. e. PlasticFS)

This would be less user friendly, and it is hard to ensure, that all
applications accessing same files are using it, and this is not always
possible.

4

• An userspace system with its own interface, like most version control
systems do it.

Not compatible with general applications, but there are more possible
features than in the classical file system.

2.1.3 Implementation

The system can either copy the old version of the file on write operations or
it can store some information about the changes (delta) and some complete
versions. It can also combine both approaches.

The variant with storing the deltas can store either the newest version
completely and reverse delta of some older versions, or delta for the newest
version against the previous. Because the newest version is most probable
to be accessed, it is more convenient to store it completely.

Generating the deltas can be done either by doing comparison between
the two complete versions, like userspace tools do (diff, xdelta, ...) and
possibly use them,

Copy on write approach is more convenient when using small files, be-
cause of not much more space and fast operations. For small changes on big
files, delta recording is more convenient, especially when constructing in the
time of write using information, which file system calls were applied.

2.2 Existing versioning solutions

2.2.1 OpenVMS

Non-free, commercial operating system. It was developed by the Digital
Equipment Corporation (DEC) in the 70’s, for the VAX (this means Vir-
tual Address Extensions) family of processors (an extension of PDP-11).
This project was formerly called starlet (the VAX-11/780 processor was
called star), than VAX-11/VMS, then VAX/VMS. In 1991 it was renamed
to OpenVMS and was ported to Alpha processors and introduced partial
support of POSIX standard and UNIX compatibility. In 2001 it was ported
to Intel Itanium.

Its native file system called ODS (Files–11 On-Disk Structure) has many
features. For example ACL (Access Control Lists), record oriented access
(files can be accessed by records, these can be indexed, etc.; this is called
Record Management System), file system and files can be split on multiple
disks, ..., and supports versioning.

The name contains the number 11 not because it has 11 so called system
files (which contain system information like bitmap of used blocks), since
they are 11 since ODS-2, but because it was used on PDP-11 and then VAX-
11. In a simpler form it was also used in the RXS-11 real-time operating
system.

5

During the time, there have been made 3 different versions of this file
system: ODS-1, ODS-2 and ODS-5. The summary of differences there is in
[1]. ODS-3 and ODS-4 are Files–11 support for CD-ROMS.

ODS-1 is old and therefore only supported on VAX. It supported file
names at most 9 characters long plus 3 characters long file-type extension.
Name could contain only uppercase (but the access is case-insensitive) al-
phanumeric characters (only English alphabet was supported, of course).
ODS-1 can’t be shared across a cluster, does not support quotas and jour-
nalling.

ODS-2 has most the ODS features, but there are still restrictions on file
names. Those can be 39 characters long and their file-type extension can be
39 characters long. A name can contain uppercase alphanumerics and the
dollar sign, hyphen and the underscore. So that a file name such as xy.tar.gz
was still not allowed. It supported both the original DEC platforms, Alpha
and VAX.

The most visible difference between ODS-2 and ODS-5 is that ODS-5 has
less restrictions on the file names. All ISO Latin-1 characters or all Unicode
characters can be used. A name can consist up to 238 bytes (including the
dot). This is either 238 ISO Latin-1 characters or 119 Unicode characters
(probably only characters less than U+10000 can be used). ODS-5 specific
features cannot be used in the VAX version of the OpenVMS. ODS-5 also
supports Itanium.

The full file path in VMS looks like:

NODE"user password"::device:[directory.subdir]filename.type;ver

The file version can also be separated by the dot instead of the semicolon.
Of course, not all the parts are mandatory. Only the file name and type are
mandatory. When no version is specified, the newest is used. Versions are
numbered from 1 to 32767. Version 0 is a reference to the newest version
of document, version -1 to the previous, etc. An old version can be either
removed manually, or there can be a version limit, and then only that number
of the newest versions is kept. This version limit can be set to a particular
file with command

SET FILE /VERSION_LIMIT=n

or can be set to a directory with command

SET DIRECTORY /VERSION_LIMIT=n

which means that all the new files in that directory will have set this
version limit, unless explicitly changed. All versions seem to be stored com-
pletely. When there is an concurrent write (for example, subprocess A opens
a file for write or appending, is writing, subprocess B opens the file for writ-
ing, is writing, B closes, A closes), then the newest version is that created by
the process having opened it as last (in this case B). Two processes cannot
append to the same file concurrently (file is locked).

6

http://h71000.www7.hp.com/doc/731FINAL/4506/4506pro.html#limit_tab

From the practical point of view, disadvantages for common users (not
server administrators) are: high cost, doesn’t run on cheap hardware, not
many end-user applications. The default listing of files is unfamiliar with
non-VMS applications, especially when accessing such system through ssh
or ftp from other systems: those applications are not able to guess file type
from the file extension and when an user searches wanted file, sees garbage
of the old versions. If an application running on VMS wants to list the
filenames without versions, it can use DCL command procedure like this
(an equivalent to the unix ls command):

$ start:
$ a=f$search("*.*")
$ if a.eqs. "" then exit
$ b=f$parse(a,,,"name")+f$parse(a,,,"type")
$ write sys\$output b
$ goto start

An application can also use some library functions for listing filenames
without version numbers or have their own. The Mozilla web browser, for
example, displays only the filenames in its file dialogs, but the user can’t
select non-recent version of some file there.

Advantages

• automatic removal of the old versions,

• consistent concurrent access,

• both the file name access and the access to a particular version are
possible.

Disadvantages

• OpenVMS itself is not free, and the license fee is expensive,

• usable by all platform applications, but adapting a new one is hard,

• directory listing is flooded,

• few people are familiar with OpenVMS.

Information about OpenVMS can be found on [1], [2].

2.2.2 FreeVMS

In the time of writing this section, actual version was 0.1.1. This project
is trying, among others, to implement an operating system under the GNU
GPL licence according to the specification of VMS, and to implement various
features to other operating systems. ODS-2 code, however, is not under the

7

GPL. It is derived from OpenVMS code and includes comment which have
to be kept. This includes:

This is part of ODS2 written by Paul Nankervis,
email address: Paulnank@au1.ibm.com

ODS2 is distributed freely for all members of the
VMS community to use. However all derived works
must maintain comments in their source to acknowledge
the contibution of the original author.

Their implementation of ODS-2 is read-write but the write still may
be buggy, their implementation of ODS-5 file system is unfortunately still
read-only. FreeVMS currently supports intel x86 compatible hardware.

It would be hard work to use some ODS-2 code in a system other than
VMS, and it is a legal issue combining it with a code under the terms of
GNU GPL inside one product. In addition to that, the code is not easy to
understand.

(Dis)advantages summary

• most properties like OpenVMS,

• freeVMS is not so much usable yet,

• software is quite free, but distributed works must keep comments in
their source code to acknoledge the contribution of the oroginal author,
which may cause license issues combining this code with a code under
the GNU GPL or other licenses.

You can find FreeVMS and information about it on

• http://www.free-vms.org/ or

• ftp://ftp.nvg.ntnu.no/pub/vms/freevms

2.2.3 CopyFS

This is a virtual file system on top of the FUSE, probably under the GNU
GPL, but there is no text of the license. The licensing is only mentioned in
the file interface.c:

/*
* cpyfs - copy on write filesystem
* Copyright (C) 2004 Nicolas Vigier <boklm@mars-attacks.org>
* Thomas Joubert <widan@net-42.eu.org>
* This program can be distributed under the terms of the GNU GPL.
* See the file COPYING.
*/

8

http://www.free-vms.org/
ftp://ftp.nvg.ntnu.no/pub/vms/freevms

But there is no file named COPYING in the tarball. This comment is
probably kept from the example file system of FUSE, which is copyfs very
strong modification of, and therefore distributing under another licensing
terms would be probably illegal anyway.

Authors of CopyFS are Nicolas Vigier and Thomas Joubert. Current
version of CopyFS is 1.0 and it does not seem being developed any more.

Using copyfs

You can mount it with a command

fmount /version/directory /mount/directory

or by directly launching fs daemon by

RCS_VERSION_PATH=/version/directory/ fcopyfs-daemon /mount/directory -d

where /version/directory is a directory, where the data of all versions
and metadata are actually stored, while /mount/directory is a directory
where the user is to work and the contents of which is versioned. The version
directory does not have any special format, only a file called metadata should
be created, which is done by the fmount script.

In the mount directory, only actual versions are normally visible. One
can list versions (besides looking to the version directory), with the fversion
perl script. It either lists all versions of the file and marks an active version,
prints the active version number, locks some version (changes which is ac-
tive) or release a lock (active is the latest). It is also able to tag files. This
means, that command

fversion -t tagfile directory

saves active version numbers for all files in the directory to the tagfile,
one file per line, the version number is separated by the pipe character. Such
state can be restored using that tagfile with the fversion script.

Version numbers are in the form major.minor, where the major increases
when the file data is modified and the minor is increased when the ownership
or permissions changes. Extended attributes are not specially solved, so that
they are reset in each new version. And particular attribute can be read,
but attribute listing does not work. Major number starts at 1, minor at 0.

Different versions can be files of different types, one can be a regular
file, the other a symbolic link, another a directory, a block special device, a
named pipe, and so on, when one file is removed and then another created.
Only regular files make new version when they are written to. When a file is
removed, all old versions are kept, but a line containing zeroes is appended
to the stored metadata. This line is overwritten, when a new file with that
name is created, so that it is not possible to find out, that there was a period
when no such file existed. When the file is removed, the metadata is not
accessible from the mounted directory.

9

There is a security issue, that when some file is removed, and then a new
with the same name is created, its permissions are set not using umask, but
they are taken from the previous version (for instance if you have standard
umask for example 022, make a directory, remove it and create a file with
the same name, it will have execute permissions).

Implementation

The fversion script does not look to the version directory, but it reads and
writes extended attributes rcs.locked version and rcs.metadata dump,
so that it is a clean solution not relying on the implementation. The format
of rcs.metadata dump is

majorversion:minorversion:mode:owneruid:ownergid:filesize:mtime

where mode is in decimal and includes bits describing a file type, and
mtime is an integer.

All versions are stored completely, and currently there is no way to re-
move the old ones, neither manually nor automatically from the mounted
file system (they can be, of course, removed from the version directory).

The contents of versions of files is stored on the version directory in files
named

12345678.filename

where 12345678 is the major version number (here always aligned to 8 dig-
its).

The metadata of the files is stored in files named

metadata.filename

the metadata of the root file system directory is in a file

metadata

The version locks are stored in a file called

dfl-meta.filename

For files in subdirectories, these files are in appropriate

12345678.dirname

directories. The metadata file contains one version per line in the format:

majorversion:minorversion:octalmode:owneruid:ownergid:versionfilename

where versionfilename contains the name like 12345678.filename, oc-
talmode is permission mode in standard chmod format (unlike the extended
attribute rcs.metadata dump).

The dfl-meta.filename contains only the version number in the form
major.minor

10

Limitations

• Creating of hard links is not permitted.

• Because copyfs uses the old fuse interface (access to files through a
name and not a file descriptor), concurrent access to the files is in-
consistent (when the process A opens and writes to a file, then the
process B opens, writes, closes, the A writes and closes, the contents
is not what the B produced - like standard Unix does, but a mix of
both outputs).

• The bug, that the permissions of a removed and recreated file are taken
not from umask, but from the previous version.

Advantages summary

• human readable data structures,

• archiving directories and special files,

• daemon in userspace,

• directory listing not flooded with version files.

Disadvantages summary

• special command for access to the old versions (fversion) needed,

• does not remove old versions,

• inconsistent concurrent access.

The authors of CopyFS are Nicolas Vigier and Thomas Joubert. CopyFS
can be found on http://invaders.mars-attacks.org/∼boklm/copyfs/

2.2.4 Version control systems

Userspace programs, primarily used by program developers, their main func-
tion is making and managing differences between versions (mostly of source
code and documentation files consisting of plain text) and synchronization
among developers. User copies (checks out) global repository to the local
working copy (version control system downloads the files and saves their
checksums or only their date of latest modification). The user makes his
modifications and when finished, merges (checks in) the changed files back
to the repository. This is called copy-and-merge.

Files changed in the repository by another user after the checkout can
be downloaded using an update operation.

11

http://invaders.mars-attacks.org/~boklm/copyfs/

These systems are able to view differences between any two versions of
the file and store them all.

There are two kinds of versioning systems, centralized (like CVS or Sub-
version) or distributed. Some developers of large projects do not like cvs
and even subversion because it is not possible there, that some users have
the permissions to only some parts of the project, so it limits distributed
development. And all the traffic goes to one server.

Thus distributed versioning systems like the git are developed, where
the project can have more branches, each of which has its own maintainer
and most developers have write access to only some parts of the project.
The branch can have subbranches. Each can branch have its own reposi-
tory where the developers can play with the project and when done then
can merge it to another repository. Detailed description of such systems is
however outside of the scope of this document, because I want to implement
a file system rather than a development tool.

Concurrent Versioning system (CVS)

The most known and spread version control system under the GNU General
Public License. But it is not the oldest. Its most common predecessors are
RCS (Revision Control System, does not have client/server architecture)
and SCCS (Source Code Control System, was part of Unix and it is not
free).

In the directory with the working copy and in each subdirectories there is
a subdirectory called CVS, which contain three files: Entries, Repository
and Root. In the Entries file there is a list of subdirectories and files
belonging to the repository. Entries of the files contain even an information
about the version (last synchronized with the repository) and the date of the
last modification (on the local disk, so that it can be the date of the check
out). There may even be local only files in the directory with the working
copy (the files not having an entry in the Entries file). New file are added
to the repository using the cvs add command. When checking in, modified
files are recognised because their modification date on disk is newer that in
the Entries file.

• no known way to use as a file system,

• can not well operate with file metadata,

• non-atomic operations,

More information about cvs can be found on cvs project homepage:
http://www.nongnu.org/cvs/

12

http://www.nongnu.org/cvs/

Subversion

Version control system with some advantages over CVS, for example it can
remember versions of a file moved or renamed, can store some metadata and
so on.

It can be used with the Apache http server to provide access via web-
dav protocol. Webdav extends the http protocol by adding methods for file
manipulation (besides the PUT method), as MOVE and COPY, and for direc-
tory (there called collection) manipulation (MKCOL creates directory, ...), and
metadata (properties) assigned to files (like PROPFIND and PROPPATCH), and
for locking.

Then, there are deltaV extensions to the protocol, defining versioning.
There are several methods there:

• per-resource versioning (client places a resource under version control,
and every time being modified, its version (state) increases,

• server-side copy model (user creates working copy on the server, per-
forms checkout, upload(put) new version and checkin),

• client-side copy model (user has local working copy and does checkin
and checkout,

• autoversioning (user has common dav client having no idea about ver-
sions, and when calls put, the server silently performs checkout, put
and checkin in server-side model.

Apache module for subversion (mod dav svn) implements subset of the
deltaV extensions and the most usable use of it is through autoversioning and
common webdav client, and it behaves as common network file system. The
manipulation with old versions, however, needs regular subversion client.

Mounting in Linux using the Davfs (which uses the Coda file system
module) as client has the problem, that mod dav svn does not implement
locks, while davfs Linux file system uses them. We can avoid this problem
through use mod dav lock apache module, which implements locks using its
own database. But when use concurrently with regular subversion client, it
would not use that database.

The licence allows redistribution and use in source and binary forms,
with or without modification, but with an so called advertisement clause,
so it is not compatible with the GNU general public license. Apache has
its own license, Apache Licence, which grants rights to reproduce in source
or binary form or make derivate works and distribute them in source or
binary form, when keeping all copyright, trademark, ... stuff. Some Apache
modules are under some another licences.

13

Dis/Advantages summary

• Very complicated to get it work as a file system (getting locks to
function),

• many programs involved (subversion, apache, coda kernel module,
davfs),

• access to the old versions through subversion clients (not through the
file system),

More information about subversion can be found on subversion home-
page: http://subversion.tigris.org/

2.2.5 XDelta

Formerly, this was something like the diff tool for binary files, it takes two
versions of file, and produces so called delta, or take an old file and the
delta and create a new version. It can only patch the unmodified old file;
it recognises a file by a checksum. The intention was to use it in version
control systems, in particular in the PRCS, which the developer of xdelta
contributes to. The Xdelta will be used in version 2 of the PRCS. The
author of Xdelta is Josh MacDonald.

There are 3 incompatible versions of xdelta. These versions do not have
much common in the code itself.

The Xdelta 1.x was just like the diff utility working even with binary
files with the ability to uncompress gzipped source files and compress the
output also with zlib. It was released under the GNU GPL licence.

The Xdelta2 was made as an application-level file system based on the
Berkeley database, which uses transactions. The access is network trans-
parent, the storage uses the same functionality as the version 1. There is no
special command specialized on extracting the delta between two files, like
in the version 1. The commands are analogical to version control systems.
This version was released under the BSD-style license, a few files remained
under the GPL.

The xdelta3 returned to make an interface for creating deltas. The for-
mat was changed to a VCDIFF standard (RFC3284) [3]. The delta is repre-
sented as a sequence of commands ADD and COPY. There can be COPYes
from different sources, in this case the source (the old version) and the target
(the part of the new version already built). This is also used to make a delta
of a single file, that means, that besides computing differences between two
files, it has a command to compress a single file (only ADD and COPY from
target).

The author claims it has about 20% worse compression ratio than gzip.
Thanks to this kind of compression, it drops support for zlib. There is an

14

http://subversion.tigris.org/
http://www.faqs.org/rfcs/rfc3284.html

intent to support more then one source in future versions of xdelta and the
PRCS. Xdelta3 is under the GPL again.

Delta file format

Common property of xdelta1 and xdelta3 delta formats is, that both have
headers containing format version, file names, lengths of all parts of delta,
etc., and delta, where commands and inserted data are stored in separate
streams. xdelta1 can print information from the header of delta in human
readable form, xdelta3 can print even all ADD and COPY commands with
their sizes and addresses. Xdelta1 also stores complete md5 checksums of
the source and the target, Xdelta3 only adler32 checksum of the target.

Xdelta3 delta is divided into 3 streams: data, instruction and address.
Each instruction in the instruction stream consists of 1 byte instruction code
and one (if the size is less than 128) or more bytes containing the number
of bytes to be copied or inserted. In the data stream there is the data to
insert, the sections are not separated (the pointer is always incremented by
the size of operation). The control stream contains offsets from where to
copy.

The delta information printed in human readable form with command

xdelta3 printdelta p1

where the file p1 was made by command

xdelta3 -s a c p1

looks like this:

VCDIFF version: 0
VCDIFF header size: 11
VCDIFF header indicator: VCD_APPHEADER
VCDIFF secondary compressor: none
VCDIFF application header: c//a/
XDELTA filename (output): c
XDELTA filename (source): a
VCDIFF window number: 0
VCDIFF window indicator: VCD_SOURCE VCD_ADLER32
VCDIFF adler32 checksum: C2FC4A0E
VCDIFF copy window length: 160
VCDIFF copy window offset: 0
VCDIFF delta encoding length: 44
VCDIFF target window length: 265
VCDIFF data section length: 25
VCDIFF inst section length: 7
VCDIFF addr section length: 2
Offset Code Type1 Size1 @Addr1 + Type2 Size2 @Addr2
000000 019 CPY_0 160 @0
000160 001 ADD 25

15

000185 035 CPY_1 80 @329
SIZE=265 TGTLEN=265

where CPY 0 means copy from source and CPY 1 from target.

Implementation

The algorithm has linear time complexity in average. It calculates some
checksums for blocks of the sources (source file and target), and puts these
checksums into a hash table. If some part is same as something already
processed, it has the same checksum and finds the appropriate record in
the hash table, where the source and the position are stored, and if it is
really the same, COPY instruction will be generated. Algorithm details are
beyond the scope of this documents. For details see xdelta3.c file in the
xdelta3 source code.

Summary

• differences for binary files,

• linear time complexity for making the differences,

• very small and lightweight.

More information about xdelta is available on:

• Xdelta homepage

http://xdelta.org/,

• An old author’s page about xdelta containing some useful informaton

http://www.xcf.berkeley.edu/∼jmacd/xdelta.html,

• PRCS project site

http://prcs.sourceforge.net/,

• page of the author

http://www.xcf.berkeley.edu/∼jmacd/,

• Presentation of copyfs:

http://www.cs.berkeley.edu/∼jmacd/stanford/sld001.htm

16

http://xdelta.org/
http://www.xcf.berkeley.edu/~jmacd/xdelta.html
http://prcs.sourceforge.net/
http://www.xcf.berkeley.edu/~jmacd/
http://www.cs.berkeley.edu/~jmacd/stanford/sld001.htm

2.3 Virtual file system frameworks

Making the filesystem in userspace has the advantage, that the code can use
library functions and call other programs, the code can be used not only
as a file system of the operating system but in various servers like an ftp
server, webdav server, etc, can be theoretically reused on more operating
systems, and it does not need to be changed when the operating system
kernel changes its internal interface or policy, and its development does
not need to be synchronised with the development cycle of the kernel. In
addition, any complex and unnecessary code in the operating system kernel
is always a security risk because of possible bugs.

So there is a small overview of some frameworks those can be used to
implement an userspace file system:

2.3.1 LUFS

LUFS is a virtual file system framework for Linux, consisting of a kernel
module and an userspace daemon. The kernel module delegates the filesys-
tem calls to the daemon. The communication is done through UNIX domain
sockets. LUFS file system can be mounted by regular users with help of a
suid binary. Read and write calls use file name as a parameter and open
files more often than necessary.

LUFS is no more developed since 2003, and most file systems using it
have switched to FUSE.

More information about LUFS there is on:
http://lufs.sourceforge.net/

2.3.2 FUSE

FUSE means Filesystem in userspace. It is a virtual file system framework
for Linux, consisting of kernel module, userspace library and fusermount
utility. A filesystem is a daemon implementing fuse filesystem calls and
passing them to a function from fuse userspace library, which mounts the
filesystem and runs the main event loop.

The daemon can run as a user (only has to be in the group fuse), but in
that case other users cannot access that file system due to security reasons
(for instance so as the user could break some scripts by making a directory
structure with cycles)

The called fuse library forks the process and the child executes the
fusermount suid binary. Fusermount mounts the filesystem and opens a
special device fuse, through which the communication with the kernel is
done. The handle of opened device is transferred to the parent through a
UNIX domain socket (created before the fork). Then the parent process
dispatches commands sent through the device in an event loop.

17

http://lufs.sourceforge.net/

operating system

application

libraries

fuse driver fs driver

disc device

disc driver

fuse filesystem

daemon

libraries

Figure 2.1: Command flow on FUSE filesystem

Read and write calls take file name as an argument and since the version
2.0 also a structure which can contain a file handle and which has to be
maintained by the filesystem daemon.

There are many file systems under FUSE. Many of them provide a func-
tion, that they modify the behavior of some existing filesystem directory
subtree (for example turn filenames to lowercase). If one wants to use more
such modifications, (s)he must mount the first fuse filesystem and let it
use the original path, then the second fuse filesystem and let it use the
path, where the first filesystem is mounted and so on if there are more such
filesystems. Then for every filesystem operation, every system call is called
at three nested levels. It would be a good idea to support pipe of filters
without the need for mounting more file systems.

Usage of a fuse filesystem

Users usually (if the daemon passes the arguments to the fuse library) mount
a fuse filesystem using the following syntax:

path/to/fsdaemon mount/point [<fuse switches>] [-o <fs_options>]

where fuse switches and fuse specific filesystem options set things such as
allowing multithreading, handling of inode numbers, handling of removing

18

files (rename if open), debugging, etc.
Unmounting is done with the command:

fusermount -u mount/point

The superuser can do both using mount:

mount -t fuse /path/to/daemon mount/point [options]

or

mount -t fuse none mount/point -o fs=/path/to/daemon[,opt=val...]

Fuse and the Linux kernel

About November 15th 2004, there were discussion, whether to merge FUSE
into the Linux kernel. Linus Torvalds and other major kernel developers
disliked this idea, saying, that it is too complicated and messy, it should
be simple and do only general page cache reading. He also criticized the
presence of exotic features said not to work fine. Linus also said userspace
filesystems not to be the right way.

After some time and fixing some problems (for example building on 64
bit architectures) fuse was merged into Andrew Morton’s testing kernel tree
2.6.11-rc1-mm in January 2005.

Because of FUSE popularity, and because no one suggested anything
better, FUSE was included into the Linux kernel 2.6.14 in September 2005.

Fuse summary

• easy to use interface,

• a filesystem ‘LUFS bridge’, binary compatible with existing LUFS file
systems,

• the ‘in’ and ‘out’ interface are not the same - building a pipe of filters
is not easy,

• is not a standard part of unix system.

More information about fuse is in implementation part and on [4].

2.3.3 PlasticFS

The plastic file system changes, how the filesystem looks like for applications.
It implements replacements for filesystem calls and library functions in a
library. The program is forced to use this library using the LD PRELOAD
environment variable. It needs no support in the kernel, but is dependent
on the implementation of the C library.

19

The advantage of PlasticFS is that these file systems are implemented
as filters and can be piped from one to the next.

The author of PlasticFS is Peter Miller. The project does not seem to
be developed more since 2004. More information about PlasticFS there is
on PlasticFS homepage: http://plasticfs.sourceforge.net/

20

http://plasticfs.sourceforge.net/

Chapter 3

Analysis

3.1 Discussion of the design

3.1.1 How to implement the versioning system

The main decision criteria are speed, configurability and dependency on any
particular technology and interface.

I preferred the last two over the first one, because most time critical
applications are not to use versioning system.

Making the versioning filesystem as a filesystem as a part (module) of
some unix like operating system or even a part of some existing filesystem
would have two disadvantages: First, only users of such system would be
able to use it, and second, the most spread ones often change their program
interface. Another reason is that too complex things do not belong into an
operating system kernel, because of risking its stability, increasing its size
and the need for coordination. If the filesystem core is in userspace and
well done, then it will be possible to also make interfaces to other userspace
applications, for example ftp server or any other server which mediates access
to a directory tree with files. Also some operating systems (for example the
GNU/Hurd) implement all filesystems in userspace.

The configurability is important because of compatibility with different
applications, which may have different requests and because different users
may prefer different behavior. For example the names of the file versions may
be required to have the same alphabetical order as the original file names,
to have the same extension (the part of the name after the last dot) as their
original file name, or to be as short as possible. Another useful configuration
option is whether to keep versions of a file when the file is removed. When all
of the operations are made by humans, it is good to save the old versions for
the case, that the user removed the file by accident (for example klicked on
the neighbouring icon). If there is some script operating over that directory,
in addition to the user, this script may create a directory with files and
remove them and will fail when trying to remove that temporary directory,

21

so may fail it there are some old versions inside.
There is already the FUSE framework in the GNU/Linux, described in

the previous chapter. Because it does not support pipelines I decided to
make my own userspace file system framework, which will run primarily
under fuse, but there would even be the possibility to implement some other
interfaces, eiher to some other frameworks or even operating systems or a
userspace application could use it instead of the file system of the operating
system.

Versioning system will be written in the C language, because it can be
compiled on high number of systems, compiled code is very quick, and it
will cooperate mostly with tools and systems with C interface.

3.2 The Fsfipi framework

So as to allow more interfaces to the version filesystem, I decided to make a
simple filesystem framework, called FSFIPI (Filesystem filter pipeline). Its
purpose is to change the behavior of a filesystem by a pipeline of filters, each
doing one simple modification.

Filters have the same interface from the higher level and to the lower
level (by lower I mean closer to the physical data storage). This interface
is made by a structure of pointers to functions manipulating the filesystem
and data structures, and a register function, which constructs filter instance
and initialize it. Only the filter in the lowest level uses the real filesystem
functions instead of calling methods of lower level, and the filter in the
highest level has an interface of the system which uses it (I have a fuse
interface, there would be possible ftp-server interface, nfs-server, ...).

The fsfipi itself should only load these modules with their parameters
from command line, and call destructors on them. So as to be as modularized
as possible, the modules are shared libraries, loaded at run-time.

3.2.1 Standard fsfipi filters

Fsfipi should be made as modularized as possible. All the basic function-
ality, that might be used be most filesystems, should be implemented by
standalone filters.

There will be one highest level filter, which will run FUSE filesystem
daemon. It will be called fuse interface, Its filesystem function (passed to the
FUSE library, and called by FUSE), should only call corresponding functions
of the lower fsfipi filter, and transform its parameters as appropriate.

The standard lowest level filter will be called localfs (this name is taken
over from plasticfs). It shoud perform requested filesystem operations on
the local filesystem.

Because there may be some filters modifying file names, there should be a
base for these filters, called rename. It should call a function to transforming

22

the file names, and pass the request to the lower level. The actual renaming
function must be defined in a separate file and be linked with, in order to
reuse the code. In fact it will be deriving a subclass from an abstract class.

Usually, an userspace filesystem doesn’t modify behavior of the whole
local filesystem, but some directory subtree, for example the home directory.
For this purpose, there will be a subtree filter, which adds some directory (or
some other) prefix at the beginning of the file paths used in the operations.
This filter will be made using the rename module.

3.3 Vaves, a fsfipi module for making versioned
filesystem

The versioning system core itself is called Vaves. It is made as a module for
the Fsfipi framework. Since Fsfipi allows more front-ends, vaves will be able
to run under more systems as well.

3.3.1 Types of changes of files

Generally, there are three types of file changes. First, any file (even the
special one) can be removed, and a new one with the same name can be cre-
ated. Second, the regular file (or directory) can be written to or truncated, so
that the contents changes. Third, the file metadata can be changed (owner,
group, permissions, extended attributes, etc.), without modifying the data.

I follow here the idea from copyfs, major and minor versions. When
the contents changes (or the file is removed and created again), the major
version is increased, when the change concerns only the metadata, the minor
version is increased. The data is stored for each major version, the metadata
for each minor version.

There is a special case, when the file is renamed. Then the system can
track the contents, like for instance subversion does, or it can track the
name, like for instance copyfs. In the first case, it is a metadata change, in
the second case, it is file removal and creation.

Vaves system tracks the file names, so it can (if remembering removed
versions is set on) remember, that, for instance, a regular file X, was removed
and replaced with a symbolic link to a file Y.

3.3.2 Information to be stored

I choose the method of storing whole file versions and copy their data on
change. Its advantages are easy implementation, quick access to the versions,
no need to delay write operations by computing differences with the cost of
higher usage of disk space.

23

Another design decision, which influences the stored information is that
the names of the versions will be fully configurable, so as to allow them to
be compatible with different possible requests.

The third factor is that the permissions should be stored separately for
each version, because when the file is removed and another with the same
name created, the two may have another owner and permissions. In addition,
for archival purposes it will store even the changes of permissions of the file
with unmodified data, as the minor versions.

logical file

major version

mi nor version

directory

file parameters

remember

 versions

status

defaults

version number

create time
remove time
status

file type
owner
group
permissions
extended

 attributesfile data

version number

#

#

Figure 3.1: Data model of the Vaves

So, the system should store:

1. the data of each major version of a file,

2. the metadata for each minor version,

3. the range (the maximum) of used major version numbers of each user
file,

4. the range (the maximum) of used minor version numbers of each major
version,

5. possibly the date of creation and ‘removal’ (since when the version is
not actual); this could be used for example by userspace scripts which
clean up old and unused file versions,

24

6. some global parameters (name of the subdirectories, in which the user
can find file versions and some accessible metadata), a pattern for
creating the names of file versions, etc. (no need not to be stored, it
can be passed to the filesystem daemon),

7. if the name of a file version is fully configurable, either one reverse
pattern for extracting the file name from the version name (generally
not possible), or the logical file name (i. e. the file which the version
belongs to) for each user visible version.

8. some information about individual file policy, in this case, for instance,
how many old version to keep. This is stored once for each user file,
and in each directory there are defaults for the newly created files.

The information stored for each unit will be stored in a separate file, the
data of more units (for instance the data of more minor versions) will not
be merged.

All this data is visible to the user with appropriate permissions, and can
be manipulated by userspace scripts.

Because the filesystem can contain not only regular files, but directories,
symbolic links, sockets, etc, as well, the metadata of files is stored as an
empty file with the same filesystem metadata, as the user file (permissions,
owner, group, extended attributes, etc.). If it was stored in a regular file,
the attributes of that file would have to be read too, before opening the file,
and parsing the information would be necessary, but it would support even
the features not supported by underlying filesystem on the other side. I call
these files ‘fake inodes’.

The minor versions are not visible directly, but the user or scripts may
see fake inodes, so that they can revert metadata changes.

The pattern for creating the name of the file versions is configurable, and
there is no general algorithm to determine the name of the user (logical) file
the version belongs to, from the name of the version (file). So as to determine
that, vaves stores the user (logical) file name and the version number in a
regular file with the same name, as the name under which user accesses the
version. Because only the major versions are visible to the user this way,
other vaves metadata stored for the major versions are stored there as well,
in particular the range of minor versions (of that major version), the creation
and ‘removal’ time. The same metadata can be accessed by the vaves user
through the metadata directory. The file data of the version is stored in a
separate file or even a special file or directory, depending of the type of the
logical file.

For each logical file there also exist an contents file, which contains the
range of major versions, the status of the file (if it is ‘removed’ or exists),
and the per-file settings (actually only how many old versions to keep).

25

In each regular directory (not the special one for the metadata), there
exists one file of default settings (the number of old versions to keep) for
new files in the directory.

3.3.3 The directory structure

The versions and the metadata files there are in subdirectories, so as not
to flood the listing of a directory containing regular files. The name of
both the directory for metadata files (which are supposed to be used only
by experienced users or scripts, by default .VAVES) and the directory with
versions (where users are supposed to find old versions, by default VAVES)
is configurable via a command-line parameter.

But Vaves gives even the possibility to store all these files in the same
directory. For this case, both types of files can be recognised by prefixes,
which are configurable as well (by default ‘.vaves ’ for the metadata and ‘ ’
for the versions.

So as not to break alphabetical sorting and applications using the file
‘extension’ to determine file type, the default format of version names con-
tains the name of the file, the version number and the ‘extension’. The
extension is taken as the part of the name from the last dot, so that if there
is no dot in the name, the extension is the same as the whole file name.

3.3.4 Removing version, files, and directories

Even though all the metadata is accessible to the user via files, the user need
not to be forced to remove all the metadata files manually.

When the user removes a version file, all the metadata files for that
major version are deleted as well. Then the range of stored major versions is
updated, and when empty, remaining files concerning that file are removed.

Removing the files is more complicated. When using by humans, some-
times a file is removed accidentally (for instance by clicking on an neighbour-
ing icon). In this case it is convenient, when the versioning system keeps
storing the removed file, so that it can be easily restored even by relatively
inexperienced user.

However, if there are also some scripts, which create temporary directory
and some files and then remove it all, they will fail removing the directory,
because of not being empty. For this purpose, there is a remove-all-versions
mode, in which deleting a file removes, not only the reference, but all the
versions.

When the user removes the directory, the subdirectory for version and
the subdirectory for the metadata are silently removed as well.

26

Chapter 4

Implementation

My versioning file system vaves uses the fsfipi framework, which is also my
work, that is why I will discuss it as well. Since it uses FUSE as the primary
interface, I will describe FUSE as well.

4.1 Fuse

4.1.1 User’s point of view

Particular file system is implemented in some filesystem daemon. Any user
in the fuse group can mount a filesystem by running this executable with
mandatory parameter specifying mount point, optional fuse parameters (de-
bugging, disabling multithreading, running in foreground, etc.). Parameters
for particular filesystem are mostly passed through the environment.

Due to security reasons, there are some limitations for common users:

• The user must have write permissions to mount-point,

• if the mount-point is sticky directory, it must be owned by the user,

• in the default configuration, no other user (including root) can access
the filesystem. (Can be overridden by /etc/fuse.conf and an explicit
option must be used).

The superuser can use the mount command as well, and is not limited
by the conditions above.

Settings and options

Options regarding the policy can be set in the file /etc/fuse.conf. Currently
there are two:

mount max = NNN Set the maximum number of FUSE mounts allowed
to non-root users. The default is 1000.

27

user allow other Allow non-root users to specify the ’allow other’ or ’al-
low root’ mount options (see below)

Library options (passed to the daemon, I don’t list all the options):

-f run in foreground; useful when running from console,

-s single thread; necessary when the file system does not support threads,

-o mount options separated by commas.

There are several mount options:

allow other, allow root Allow access to other users, or to the root re-
spectively. By default, these options are allowed to the root only, but
they can be allowed to all user in /etc/fuse.conf (see above). With
this option, it is useful to use an option default permission.

default permission By default, FUSE doesn’t check file access permis-
sions, the filesystem is free to implement it’s access policy or leave
it to the underlying file access mechanism (e.g. in case of network
filesystems). This option enables permission checking, restricting ac-
cess based on file mode. This option is usually useful together with
the ’allow other’ mount option.

kernel cache This option disables flushing the cache of the file contents on
every open(). This should only be enabled on filesystems, where the
file data is never changed externally (not through the mounted FUSE
filesystem). Thus it is not suitable for network filesystems and other
‘intermediate’ filesystems. NOTE: if this option is not specified (and
neither ’direct io’) data is still cached after the open(), so a read()
system call will not always initiate a read operation.

direct io disables the kernel page cache.

hard remove disable the default behavior, where a removed file is only
renamed and the actual removal takes place after the release() call.

use ino, readdir ino Use inode numbers reported by the filesystem al-
ways, or when reading directory entries respectively. By default fuse
does not use these numbers.

nonempty Allow mounting over non-empty directory. By default, fuse
since version 2.3.1 does not allow it. This option is not in older versions
of fusermount.

umask=M, uid=N, gid=N Override filesystem permissions (clears bits
set in umask), set owner user or group respectively.

28

4.1.2 Programmer’s point of view

The main task of the programmer is to implement some or all filesys-
tem functions. Pointers to these function are filled to a structure of the
fuse operations type. Then he only has to pass this structure and fuse
arguments to a function fuse main, which is in the fuse library and which
does all the job (processing arguments, mounting, communication with the
kernel, the main event loop, handling of the TERM signal, and so on). Pro-
grammers can also do some job themselves and use a more detailed API
instead of the fuse main function.

The fuse main function has the following prototype:

int fuse_main
(
int argc,
char *argv[],
const struct fuse_operations *op

);

where argc, argv are the same as those given to main(), and op is struc-
ture containing the pointers to the functions implementing each operations,
defined as a following structure:

struct fuse_operations
{

int (*getattr) (const char *, struct stat *);
int (*readlink) (const char *, char *, size_t);
int (*getdir) (const char *, fuse_dirh_t, fuse_dirfil_t);
int (*mknod) (const char *, mode_t, dev_t);
int (*mkdir) (const char *, mode_t);
int (*unlink) (const char *);
int (*rmdir) (const char *);
int (*symlink) (const char *, const char *);
int (*rename) (const char *, const char *);
int (*link) (const char *, const char *);
int (*chmod) (const char *, mode_t);
int (*chown) (const char *, uid_t, gid_t);
int (*truncate) (const char *, off_t);
int (*utime) (const char *, struct utimbuf *);
int (*open) (const char *, struct fuse_file_info *);
int (*read) (const char *, char *, size_t, off_t,

struct fuse_file_info *);
int (*write) (const char *, const char *, size_t,

off_t, struct fuse_file_info *);
int (*statfs) (const char *, struct statfs *);
int (*flush) (const char *, struct fuse_file_info *);
int (*release) (const char *, struct fuse_file_info *);
int (*fsync) (const char *, int, struct fuse_file_info *);
int (*setxattr) (const char *, const char *, const char *,

size_t, int);

29

int (*getxattr) (const char *, const char *, char *, size_t);
int (*listxattr) (const char *, char *, size_t);
int (*removexattr) (const char *, const char *);

};

where fuse dirfil t is defined as:

typedef int (*fuse_dirfil_t)
(
fuse_dirh_t h,
const char *name,
int type,
ino_t ino

);

and fuse file info is defined as:

struct fuse_file_info
{
int flags;/*Open flags*/
unsigned long fh;/*file handle*/
int writepage;/**/

};

Most of these functions are similar to UNIX system calls, with following
differences (stolen from fuse.h):

• All methods are optional

• All operations should return the negated error value (−errno) on er-
ror.

• There is no create() operation, mknod() will be called for the creation
of all non-directory, non-symlink nodes.

• There is a change in FUSE 2.2 in read() and write(). Up to the
version 2.1, they are not passed a file handle, but rather a pathname.
Since 2.2, there is a parameter of type pointer to struct fuse file in-
fo, containing flags for open() (in 1.x flags were passed directly), file
handle fh (may be filled in by open(), used by read(), write() and
release()), and writepage field (indicating, if the write was caused
by writepage()).

• The offset and length of the read() and write() are passed as the
arguments, like the pread() and pwrite() system calls. (NOTE:
read() should always return the number of bytes requested, except at
end of file)

30

• open() should not return a file handle, but 0 on success. No cre-
ation, or truncation flags (O CREAT, O EXCL, O TRUNC) will be passed
to open(). open() should only check if the operation is permitted for
the given flags.

• getattr() is similar to stat() and doesn’t need to fill in the following
fields: st ino, st dev, st blksize

• readlink() should fill the buffer with a null terminated string. The
buffer size argument includes the space for the terminating null char-
acter. If the link-name is too long to fit in the buffer, it should be
truncated. The return value should be 0 for success.

• getdir() is the opendir(), readdir(), ..., closedir() sequence in
one call. For each directory entry the filldir parameter should be
called.

• release() is called when an open file has: 1) all file descriptors closed
2) all memory mappings unmapped For every open() call there will be
exactly one release() call with the same flags. It is possible to have
a file opened more than once, in which case only the last release will
mean, that no more reads/writes will happen on the file. The return
value of release() is ignored.

• flush() is called when close() has been called on an open file. NOTE:
this does not mean that the file is released (e.g. after fork() an open
file will have two references both of which must be closed before the file
is released). The flush() method may be called more than once for
each open(). The return value of flush() is passed to the close()
system call.

• fsync() has a boolean datasync parameter. If this parameter is
TRUE then it is an fdatasync() operation.

The programmer can use more detailed api instead of fuse main, which
consists of several functions, most of which are used in fuse main:

• fuse mount() and fuse unmount()

• fuse new() (initializes data structures)

• fuse loop() and fuse loop mt() (the main event loop single/multi
threaded)

• fuse exit() (exits main event loop)

• fuse get context() (gets context of current operation – UID, GID
and PID of the calling process)

31

• fuse invalidate() (invalidates cache data of a file)

• fuse is lib option() (indicates, if specified mount option is pro-
cessed by the library or the kernel)

There is also an advanced API, for use, if a programmer would like to
change the implementation of fuse commands and/or for debugging pur-
poses.

It is recommended to define FUSE USE VERSION macro to a value like 22
(version 2.2), 11 (version 1.1) to specify the API version to use.

Implementation

User mode filesystem program calls fuse main(), which parses the arguments
and calls fuse mount(). It creates UNIX domain socket and forks the process
and the child execs setuid root utility fusermount (calling user must be
either root or a member of the fuse group). fusermount opens the fuse
device, with the name /dev/fuse. (character special device, major 10, minor
229), or /proc/fs/fuse/dev (in case of an old fuse kernel module), or tries to
create such device in temporary directory. Then adds the file descriptor to
the fuse device to the mount options and calls the mount() system call.

Then the kernel module stores pointer to struct file corresponding to
that descriptor to the filesystem superblock (memory structure). The struct
file is a handle to an open file ‘from the kernel side’.

UNIX domain sockets can transfer not only some data, but also an open
file descriptor, i.e. not only the integer, but the permission itself. After the
mount() call, fusermount sends the descriptor of the open fuse device to its
parent, through the UNIX domain socket, and exits.

If someone tries to access the filesystem and has necessary permissions,
the fuse module sends a request through the file handle (struct file *),
associated with the filesystem superblock.

On the other side, fuse main() enters an event loop, in which it reads
commands from the descriptor to the fuse device, and executes them by call-
ing functions in the fuse operations structure. The loop is also checking
the exited variable, which is set, when a signal like SIGABRT, SIGINTR
is received or when fuse exit() is called, and in such case, exits the loop.

4.2 The Fsfipi framework

So as to allow more interfaces to the version filesystem, I decided to make
a simple file system framework, called FSFIPI (Filesystem filter pipeline).
Its purpose is to change the behavior of a filesystem by a pipeline of filters,
each doing one simple modification.

Since the filesystem daemon is most probably run by scripts, each pa-
rameter for individual filter is one command-line parameter of the fsfipi.

32

Parameters for one filter and for the next filter are separated by ‘–’ parame-
ter. The name of the filter to use is determined by the first parameter after
this separator.

4.2.1 How does it work

Filters have the same interface from the higher level and to the lower level (by
the lower I mean closer to the physical data storage). This interface is made
by a register function, which constructs filter instance and initialize it, and
by a structure of pointers to functions manipulating the files and directories
and pointers to data structures. The register function is the constructor of
data structures of the filter – it allocates all the data structures, initializes
them and return the pointer to the main structure with the functions.

Only the filter in the lowest level uses real filesystem functions instead
of calling methods of lower level, and the filter in the highest level has an
interface of the system which uses it. I have a Fuse interface, there would be
also possible to make the highest level with another interface or as an server
of some protocol for manipulating files, such as an ftp-server, nfs-server, etc.

The fsfipi itself does only loading these modules with their parameters
from command line, and call contructors (the register function) and destruc-
tors on them. The first is done with a fsfipi load module function taking
the same arguments as the filter constructor (see below). It determines the
file name of the filter binary (shared library) from the first argument, loads
this binary, determines the name of the constructor, loads it, runs it and
returns its result.

Imagine the following command:

fsfipi \
-- fuse_interface /path/to/mount "$@" -f -s\
-- locase\
-- subtree /path/where/stored \
-- localfs

fsfipi will first load module localfs from the library libfsfipi local-
fs.so (in default configuration on unix-like system), then executes the regis-
ter function with the name fsfipi localfs register passing ‘localfs’ as
the first argument and passes a NULL pointer as the lower level. Then tries
to load module subtree in the library libfsfipi subtree.so and calls its
register function fsfipi subtree register passing arguments ‘subtree’
and ‘/path/where/stored’ and passing the structure returned by the pre-
vious register function (from localfs). Then it tries to load the locase
module (Such a module does not exist yet, but probably will. Such filters
are those Fsfipi was designed for) and fuse interface with its parameters.
The register function of fuse interface does not return immediately, but
runs a fuse filesystem.

33

When the user does an operation under the /path/to/mount directory,
the linux kernel finds that it is mounted on the fuse filesystem, and tells
the Fuse kernel module to handle it. The Fuse module sends a command to
the Fuse fs daemon (run by fuse interface), and it is handled in the Fuse
library. It calls appropriate function defined in fuse interface. This func-
tion maps the call to the corresponding fsfipi method, which was passed from
the locase module. This method in the locase module changes the letter in
the path parameter and calls the same function from the subtree module,
which adds prefix to the path and calls the method from the localfs mod-
ule. The function from the localfs module use a standard filesystem call or
a library function, which operates on the real local file system. Because the
prefix added in the subtree module, it accesses only a part of the filesystem.

operating system

application

libraries

fuse driver fs driver

disc device

disc driver

fsfipi

fuse_interface

vaves

subtree

localfs

rename

libraries

Figure 4.1: Command flow on an Fsfipi filesystem with the Vaves filter

34

4.2.2 The interface

Every filter contains a constructor function of the following type:

typedef
struct fsfipi_operations *fsfipi_register_func
(
struct fsfipi_operations *lower_level,
struct fsfipi_global *global_data,
int argc, char *argv[]

);

The parameter lower level is a pointer to the structure of the filter in
the lower level, global data is a pointer to the data common to all filters,
argc and argv are parameter count and the filter parameters. The function
returns a pointer to a fsfipi operations structure of the filter instance.

The fsfipi operations structure contains the pointers to file system
functions. All the member functions take context as their first argument,
which is a pointer to the fsfipi operations structure. The set of this
functions is mostly taken over from fuse. The declaration of this structure
is:

struct fsfipi_operations {
void *private_data;
struct fsfipi_global *global;
struct fsfipi_operations *next;
void (*init)
(struct fsfipi_operations *context, void *data);

void (*unregister)
(struct fsfipi_operations *context);

int (*getattr)
(struct fsfipi_operations *context,
const char *path, struct stat *stbuf);

int (*readlink)
(struct fsfipi_operations *context,
const char *path, char *buf, size_t size);

int (*mknod)
(struct fsfipi_operations *context,
const char *path, mode_t mode, dev_t dev);

int (*mkdir)
(struct fsfipi_operations *context,
const char *path, mode_t mode);

int (*symlink)
(struct fsfipi_operations *context,
const char *path, const char *to);

int (*link)
(struct fsfipi_operations *context,
const char *path, const char *to);

int (*rename)

35

(struct fsfipi_operations *context,
const char *path, const char *to);

int (*unlink)
(struct fsfipi_operations *context, const char *path);

int (*rmdir)
(struct fsfipi_operations *context, const char *path);

int (*chmod)
(struct fsfipi_operations *context,
const char *path, mode_t mode);

int (*chown)
(struct fsfipi_operations *context,
const char *path, uid_t uid, gid_t gid);

int (*utime)
(struct fsfipi_operations *context,
const char *path, struct utimbuf *buf);

int (*open)
(struct fsfipi_operations *context,
const char *path, struct fsfipi_file_info *handle);

int (*truncate)
(struct fsfipi_operations *context,
struct fsfipi_file_info *handle, off_t offset);

int (*ntruncate)
(struct fsfipi_operations *context,
const char *path, off_t offset);

ssize_t (*read)
(struct fsfipi_operations *context,
struct fsfipi_file_info *handle,
char *buf, size_t size, off_t offset);

ssize_t (*write)
(struct fsfipi_operations *context,
struct fsfipi_file_info *handle,
const char *buf, size_t size, off_t offset);

int (*fsync)
(struct fsfipi_operations *context,
struct fsfipi_file_info *handle, int datasync);

int (*release)
(struct fsfipi_operations *context,
struct fsfipi_file_info *handle);

int (*opendir)
(struct fsfipi_operations *context,
const char *path, struct fsfipi_file_info *handle);

int (*readdir)
(struct fsfipi_operations *context,
struct fsfipi_file_info *handle,
void *buf, fsfipi_fill_dir_t fillfunc, off_t offset);

int (*fsyncdir)
(struct fsfipi_operations *context,
struct fsfipi_file_info *handle, int datasync);

int (*releasedir)

36

(struct fsfipi_operations *context,
struct fsfipi_file_info *handle);

int (*setxattr)
(struct fsfipi_operations *context,
const char *path, const char *name,
const char *value, size_t size, int flags);

ssize_t (*getxattr)
(struct fsfipi_operations *context,
const char *path, const char *name,
char *value, size_t size);

ssize_t (*listxattr)
(struct fsfipi_operations *context,
const char *path, char *buf, size_t size);

int (*removexattr)
(struct fsfipi_operations *context,
const char *path, const char *name);

int (*statfs)
(struct fsfipi_operations *context,
const char *path, struct statfs *stfbuf);

};

The purpose of the members is:

• The private data member points to the private data of the filter
object (settings, parameters, state),

• the global member points to the data common to all filters and about
the whole filesystem. Currently there is information whether to debug
and whether the whole pipeline is thread safe,

• the member called next points to the fsfipi operations structure
of the filter in the lower layer,

• optional function init is called when the cascade of filters is con-
structed. Usually, initialization is done in the register function,

• destructor function unregister should release all data structures,

• file system methods taking the file path as the second argument:
getattr, readlink, mknod, mkdir, symlink, link, rename, unlink,
rmdir, chmod, chown, utime, setxattr, getxattr, listxattr, re-
movexattr, ntruncate, statfs; the names are self-explanatory and
correspond to system calls with the same name, only getattr corre-
sponds to stat() and ntruncate corresponds to truncate() system
call (file is determined by the name, not by a descriptor),

• regular file data manipulation functions: open, truncate (truncates
file by handle), read, write, fsync (corresponds to fsync() or fdata-
sync(), depending on a parameter), release (corresponds to close);

37

open gets file name and returns a handle (pointer to fsfipi file info
structure), the others take that handle as the second argument,

• directory manipulation functions: opendir, readdir, fsyncdir, re-
leasedir; these methods are directory equivalents for the above, ex-
cept for readdir, which calls a callback function (the pointer of which
it has got as an argument) for each directory entry instead of filling
the buffer itself.

4.3 Standard fsfipi modules

I created some basic fsfipi modules according to the analythical part, which
made it possible to use it above a linux file system, and to only add special-
ized filters. These standard modules are:

• localfs performs fsfipi operations on the real filesystem. Used as the
lowest level filter,

• fuse interface runs a fuse file system and the fuse operations are
transformed to fsfipi operations sent to the lower level. Used as the
highest level filter,

• rename is an abstract ‘class’ for a filter, which changes file names. All
operations taking file name as an argument call function transform -
name, which is not defined in this module,

• subtree is based upon the rename module, and its name transforming
function adds a prefix to each path, usually a directory path; it makes
possible, that localfs operates on specified directory subtree rather
than the full filesystem,

• debug prints which calls are passed through this filter. This module
takes a prefix parameter, which is used to prefix debug messages (so
that if this filter is used more than once in one pipeline, the messages
can be distinguished. If this parameter is not used, filter does not pass
calls to the lower level (so that the test can be read only).

4.4 Vaves

Main properties of the versioning module are determined by the analytical
part of this document. There are some issues which had to be solved some
way.

38

4.4.1 Issues

Version number overflow

The question is if the version number has some limit and if so, what to do
when this limit is reached for some file. For practical reasons, the version
number is internally represented as an integer of fixed length, in particular
the type long is used, which is usually 32 bit wide and with a sign. So that
positive numbers up to 2,147,483,647 can be used. Because the maximum
representable number is so high, that a file changed every second will reach
the limit after 68 years, reaching this limit means that most probably some-
thing goes wrong on a machine (and very often writing daemons are not the
target group for the versioning system), vaves simply return an error (out
of range) and does not perform the requested operation.

Multiple threads

I was initially thinking it should support multiple thread operation, but
there are some problems. Because there are more physical files for one
logical (user) file, and some are related to the other, it would be reasonable,
if locks were related to the logical files. But for instance when accessing the
version, file must be first read to determine, which logical file does it belong
to. But when reading that file, no other thread should write to the file.

There are some possible solutions:

• To have two kinds of locks one for versions and one for logical files and
using an optimistic deadlock policy. When accessing a version, the
version would be locked and then the logical file, and when accessing a
logical file or a metadata file, the logical file would be locked first and
then the version. If a deadlock occurred, it would do some rollback.
Implementing that rollback mechanism would be a complicated task,
and writing to a journal would slow down the operations.

• To have two kinds of locks one for versions and one for logical files
and avoid deadlocks. Deadlock cannot occur, if the locks are always
taken in a defined order. We would always lock logical file before the
version. When accessing a version, the version file would be locked,
read, and unlocked. After that unlocking the version, the logical file
would be locked and the version again. But then in the meantime,
when nothing was locked, some other thread could change the version
file, remove the version or even all the version with the metadata files,
so that there would be more file reads and complicated tests.

• One big critical section for all the operations or locking all the file
system for read or write. There would be almost no speed advantage
over the single thread implementation.

39

• To resign on the fully configurable version names, and to determine
the logical file name from the name of the version. Then the logical
files could be easily locked.

Another significant difference between single and multi-threaded imple-
mentation would be the fact, that many big data structures would be used
by each thread. So, for now, vaves can safely run only in one thread. Multi-
thread support may be in some future version.

Hard links

If there are two hard links to the same file, if one is changed, the same
changed file should be under the other link. In standard Unix file systems,
this is implemented using inodes, which point to the data. But in the ver-
sioning system, both inodes of the old versions need to have the same inode
and both inodes of the new versions need to have the same inode. Then
either the versioning information should be per inode (but we are tracking
the name history), or there should be some pointer to the other names (for
example, the hard links can have two-way linked list), so that we can update
all the other names. This would be time consuming. Because this correct
behaviour is seldom necessary and the most common use of hard links is to
safe disk space when storing (large) files, which are not written to, vaves
only links the newest versions, and if one file is modified, the other will
remain unchanged.

Directories

Because of it were too complicated to version directories, and because it is
not necessary, directories are not versioned. When a directory is created, all
the old versions are removed.

4.4.2 Source files

fsfipi vaves.c

Definition of the file system functions with the fsfipi interface.

fsfipi operations.c

Definition of the functions manipulating the files, which are used by
function from fsfipi vaves.c. For example routines creating new
versions, removing versions, etc.

fsfipi operations.h

Function prototypes of functions from the fsfipi operations.c file.

40

fsfipi utils.c

Simple routines for parsing strings and constructing the names of dif-
ferent kinds of files, which do not access files.

fsfipi utils.h

Function prototypes of functions from the fsfipi utils.c file.

vaves.h

Structures used in above files, constants, macros.

vaves-static.c

Because used debugging tools can not debug code in dynamically
loaded shared libraries (the default use of fsfipi), this is a source for
statically linked executable using vaves. Used modules are not deter-
mined by program arguments, but they are hard-wired in the source.

4.4.3 Data structures

There are three essential data structures in Vaves:

data vaves contains the parameters of the vaves filter Pointer to it is stored
in the private data field of the fsfipi operations structure.

vaves buffers contains buffers for constructing file names and the opera-
tions with the file data (copying) or extended attributes. The reason,
why they are grouped in the structure is that in the single thread
implementation they are static, but if there would be a multi-thread
implementation, they will have to be on the stack.

lfile data contains the information related to the logical file, such as the
complete path, name, extension, maximal and minimal major ver-
sion numbers, current state (removed or existing), how many versions
should be kept, and if the structure represents a logical file, a version
file, or a metadata file.

vfile data contains information about the used version, such as version
numbers, state, and creation and removal times.

4.4.4 Internal functions

Important functions used by more file system calls or by other internal
functions. I list only the most important ones.

get new min ver() creates a new minor version of a document and fills the
logical file name and version numbers (of the new version) into the
data structures (vfile data, lfile data).

41

get new maj ver() creates new major version of a document and fills the
name and version into the data structures. If the file does not exist
yet, it creates all the necessary metadata files. If the file does exist it
copies the contents to the new version and removes the oldest version
according to the remember versions=N parameter.

remove item() removes a logical file (not the versions if remove all ver-
sions is not set). Used by unlink(), rmdir() and rename() opera-
tions.

remove version() removes a specified file version and its metadata files.

update version extent() updates the minimum and maximum major ver-
sion numbers after version removal.

get version info() fills the logical file name and version numbers into the
data structures (and reads the files necessary to find it out).

get version info r() as the previous, but for read-only operations, so
that in case of version files the contents file needs not to be read, and
when the file does not exist, an error is returned. Uses the function
above.

read metadata() reads parses a file with metadata, and calls passed call-
back function, which fills appropriate data structures.

get * name uses filled data structures to construct the name of a metadata
file of appropriate type.

split name() parses given path to find a path of the logical file and an
information, if the path represents a logical file, a version or a metadata
file, so that the names of the metadata files can be constructed.

4.4.5 How does the filesystem functions work

Most file system operations need to determine the name of a logical file and
its version to use (if not using a version file, the latest version is used). Deter-
mining the name and the version of a file (in the function get version info
is done in the following way:

First, it is determined, if the name represents a a file version (there it is in
the version subdirectory and begins with the version prefix), some metadata
(there it is in the metadata subdirectory or there it is in version subdirectory
and does not have the version prefix – for the case both directories are the
same) or a logical file (the file which is versioned). Then it determines the
name of the logical file and its version to use.

If the path belongs to a ‘version file’, the file with that name has to be
read, that contains the information, which logical file it belongs to. Then,

42

only in the case of write operation, it reads the ‘contents file’ to determine
the newest versions of the file and make the new minor/major version.

If the path belongs to a logical file, the ‘contents file’ in the metadata
directory must be read. It contains the highest version numbers (major and
minor).

If the path belongs to a metadata file, this is handled in a special way -
such a file represents itself.

Once the logical file name and the version number are known, paths to
all the metadata files and version files can be constructed and new versions
created.

The operations which read some file metadata (getattr(), getxattr(),
readxattr() call get version info() so as to get the information about
the name and version and then use get inode name() so as to obtain the
name of the ‘fake inode’ and perform the operation on the ‘fake inode’. The
getattr() operation obtains some information (length) from the data file.

The functions manipulating file metadata (chown, chattr, etc.) call
get new min ver() (which copies the fake inode as well), then obtain the
name of the ‘fake inode’ and perform the operation on that.

The open() operation behaves different if a file is to be open read only
and if the file is to be opened for writing. If for reading, then the name and
version is determined and the date file is opened and its descriptor will be
used for read() and release() operations. If the file is to be opened for
writing, get new maj ver() is called (so that the data file and fake inode
are copied to the new version) and then the data file is opened in that mode.

If a new logical file is to be created using mknod() or mkdir(), a new
version is created (increased numbers, updating metadata) but no contents
copying occurs. Vaves recognises, that a file is removed, even if there are
some old versions, from the field remove status in ‘contents file’ or from the
fact, that there is no ‘contents file’ yet. It is done using get new maj ver().
Only logical files may be created.

If a logical file is to be removed using unlink or rmdir, then depending
on the parameter remove all versions either all versions (and its files) are
removed or only the remove status is changed and the link with the name
of the logical file is removed.

If a (major) version is to be removed, all its files are removed and the
range of versions of the logical file is updated. If no versions leave then all
files belonging to that logical file are removed.

One of the most complicated functions is rename. It first creates a new
version of the destination and determines the version of the source. So as to
avoid copying, it first tries to make the data of the new file as a hard link to
the data of the old file. If this does not succeed (either the file is a directory
or it is not supported), in case of a directory it is moved (directories are not
versioned) and in case of a file it is copied. Finally, the old file is marked as
removed (or all the versions are removed).

43

Functions read() and write() work with the handle returned by the
open method, and only pass parameters to the read or write of the lower
level module. That handle was returned by the lower level open() method
when opening the ‘data file’.

When reading the contents of directories, the readdir() function only
returns the result of the lower layer, beacuase all the metadata files are
visible to the user, the version files have only different behavior, and the
logical files are implemented as symbolic links to the data file of the current
version, so they are listed as well. The last fact has the advantage, that the
version file system can be used for reading even on the physical file system,
without running the file system daemon.

44

directory

remember versions

.VAVES/.vaves_dir−.txt
directory data file

logical file

.

fn.ext
fn.ext

−>.VAVES/.vaves_data−fn.ext−8

contents file

.VAVES/.vaves_ctx−fn.ext

min. major version
max. major version
max. minor version
status

remember versions

major version
VAVES/~fn.ext−8−.ext

version file

VAVES/~fn.ext−8−.ext

metadata

.VAVES/.vaves_ctx−fn.ext

metadata

.VAVES/.vaves_ver−fn.ext−8−.ext
logical name
major version
minor versions
status
create time
remove time

data file
.VAVES/.vaves_data−fn.ext−8
data

.VAVES/.vaves_data−fn.ext−8

minor version

metadata

fake inode

.VAVES/.vaves_inode−fn.ext−8.0
file type
owner, group, permissions
extended attributed

.VAVES/.vaves_inode−fn.ext−8.0

The virtual filesystem The real filesystem

Figure 4.2: Files used in Vaves with their default names

45

file.ext

VAVES

~file.ext−3−.ext

.VAVES

~file.ext−5−.ext
~file.ext−4−.ext

.vaves_dir−.txt

.vaves_ctx−file.ext

.vaves_data−file.ext−3

.vaves_inode−file.ext−3.0

.vaves_data−file.ext−4

.vaves_data−file.ext−5

.vaves_inode−file.ext−4.0

.vaves_inode−file.ext−4.1

.vaves_inode−file.ext−5.0

Figure 4.3: Files removed, when the user deletes ˜file.txt-4-.txt, the fourth
version of a file file.ext

46

Chapter 5

Tests

There are many methods of testing correct function of a new file system.
Their purpose is to test if all the function work correctly and if they work
correctly not only at the first attempt but even under heavy load. The
latest is well done using some benchmark. For first two, I have used some
self-made tests.

The first test is comparative, and the success can be determined by com-
paring the two produced files. The two next tests are semi-automatic tests.
This means, that I made scripts, which perform some filesystem operations
and after some of them display the recursive directory listing or the file con-
tents, which has to be checked by human. This method was chosen because
of productivity; automatic checks takes more time to implement than a look
on the listing. The next test is a by-product of the use of the benchmarking
tool. The next test used comes from the Linux Test Project.

All the tests were successful.

5.1 The seek and write test

This test performs large writes and seeks to two files and then it compares
them. One of these files is stored on a well-tested filesystem and the other
on the being tested filesystem.

The program performing writes and seeks is written in C and stored
in the file test-write.c. It opens one file, seeks in that file to positions
between 0 and the value of the fifth parameter (by default 10MB), then
writes sequences of random bytes of random length between 1 and the value
of the sixth parameter (by default 1MB). The seek and write is repeated the
value of the fourth parameter times (by default 200 times).

47

http://sourceforge.net/projects/ltp/

5.2 The filesystem test

This semiautomaic test is run by test-fs.sh. It checks, if the filesystem
behaves correctly, i. e. if created files exist, contain what was written to
them, have attributes which they should have, don’t produce errors, etc. To
run this test, the filesystem has to be run in mode remove all versions=1.

The test does in particular:

• Writes to a file, rewrites it and appends to it, reads the contents,

• changes its permissions,

• removes the file and creates a directory with the same name,

• creates and changes a file in that subdirectory,

• deletes the file in the subdirectory and the subdirectory,

• writes to a file, renames it and reads it,

• creates a long file and lists its contents in a pager,

• moves the file in a subdirectory and back,

• makes a symbolic link,

• set, lists and removes an extended attribute of a file,

• removes the used files and recursively lists directory contents.

After most operations, test lists the result (the contents of a file or a
directory) and waits for user input to continue.

5.3 The test of vaves specifics

This test can be run by test-vaves.sh. Its purpose is to check, whether
the versioning works as it should. Tests for instance combining of changing
permission of the version and of the logical file, removing individual versions,
creating subdirectory and file in them and removing them, etc. To run this
test, the filesystem has to be run in mode remove all versions=1.

The test does the following:

• Writes to a file and rewrites it,

• changes permissions of the new and the old version,

• rewrite the file, so that there is a new version,

• changes permissions of the file,

48

• removes the second, the third and the first version,

• creates a directory with the same name as the file above,

• writes to and rewrite a file in that directory,

• removes the file in the directory and the directory,

• writes to a file with the same name,

• removes that file.

5.4 The Bonnie++ benchmark

Even the used benchmarking tool checked some qualities of the file system.
It read froem and wrote to a file of length of 464MB without errors, created
16384 files, accessed them and removed them in both sequential and random
order without errors as well, and then succeeded removing the temporary
directory, in which this all was done. This means that what was read (and
had been written before), existed. The details about this tool there are
below.

5.5 The FS INOD test from the LTS

This test is a part of the Linux Test Project. It has three parameters:
numdir, numfiles, numloops. It creates two directories dir1 and dir2.
Then creates numdir subdirectories in each of them. Then it creates num-
files files in each of these subdirectories in the dir1 directory in sequential
order. Then it removes these files and creates them in the dir2 directory and
removes those as well. This file creating and removing is repeated numloops
times. This test was successful with the parameters of 100, 100 and 2 and
the vaves run with the remove all versions=1 parameter.

49

Chapter 6

Benchmarks

6.1 What and how it was measured

I used bonnie++, a utility to test hard drive performance. The utility
consists of a few test, measuring different types of file operations. Bonnie++
and the information about it can be found on

• http://www.coker.com.au/bonnie++/ or

• http://sourceforge.net/projects/bonnie/.

Bonnie++ contains following tests:

I/O tests: Used file of length 464MB

Sequential per character write
writes the data using the putc() stdio macro/function,

sequential block write
writes the data using the write() syscall,

per block read and rewrite
each block is read (using read()), dirtied and written using wri-
te(), requiring lseek() to the original location,

sequential per character read
reads file using getc() in a loop,

sequential block read
reads the file using read(),

random seeks
three parallel processes doing a total of 8000 lseek()s to random
locations. In each case the block is read (using read()), 10% of
them are also dirtied and written back using write().

50

http://www.coker.com.au/bonnie++/
http://sourceforge.net/projects/bonnie/

File manipulation tests (manipulates 16384 files):

It uses file names containing 7 digits numbers and an string of 0 to 12
random alpha-numeric characters. For the sequential tests the random
string follows the number, for random tests the random string is the
first.

Sequential file create
creates files in the number order,

sequential file stat
performs stat() on all files in the order, in which they are returned
from readdir(),

sequential file delete
deletes the files in the same order,

random file create
creates the files,

random file stat
perform stat() on random files. Not all files must be stated(),

random file delete
Delete files in random order.

So as to measure, how much the Vaves is slower than a standard unix
filesystems, I compared the following tests:

1. The benchmark was running directly on the standard filesystem. (la-
beled ‘disk’)

2. The benchmark was running on a directory on the fuse filesystem
fusexmp, which mirrors the whole virtual filesystem. The mirrored
directory is the same as the one used in the first test. Comparing with
the first test gets us the overhead caused by using fuse and the fuse
example filesystem. (labeled ‘fusexmp’)

3. The benchmark was running on a directory on a fsfipi filesystem with
only the necessary filters, i.e. fuse interface, subtree, localfs.
The directory mirrored is that used in the first test. Comparing with
the second test gets us the overhead of fsfipi. (labeled ‘fsfipi’)

4. The benchmark was running on a fsfipi filesystem using even the vaves
filter with parameter remove all versions=1 (so as not to fail when
removing a temporary directory) Comparing with the third test gets
us the overhead of the Vaves. (labeled ‘vaves’)

So as to compare the influence of the underlying filesystem and device,
I applied the above tests on the following configurations:

51

• ext3 with filetype option on and dir index option off (the default)

• ext3 with filetype option off and dir index option on

• reiserfs

• reiserfs (partition used from 59%, there may be some fragmentation)

All the tests were done on a machine with CPU AMD Sempron 2300+
with 128kB L1 cache and 256kB L2 cache, 256 MB RAM (16MB shared
with integrated GPU), VIA VT8378 [KM400] chipset, IDE hard disk Maxtor
6Y080L0.

6.2 Results

Here there are the tables of results of the tests. If bonnie++ returns
+++++ instead of a value somewhere, it is because the test lasted less
than 0.5 second, which means that the throughput was at least 32768 files
per second, so I write ‘>32768’ there.

52

disk fusexmp fsfipi vaves
putc write [KB/sec] 27085 21717 22585 22380
write [KB/sec] 43894 41824 38744 39567
rewrite [KB/sec] 12735 7189 7357 7531
getc read [KB/sec] 19832 16352 16624 15441
read [KB/sec] 40594 31597 33717 27782
seek [/sec] 130.4 96.9 102.7 49.6
seq. create [/sec] 1514 1143 792 30
seq. stat [/sec] >32768 >32768 31190 2415
seq. delete [/sec] >32768 17897 17321 1632
rand. create [/sec] 1287 1010 920 30
rand. stat [/sec] >32768 >32768 >32768 104
rand. delete [/sec] 3345 2499 2367 206

Table 6.1: Throughput of operations on default ext3

disk fusexmp fsfipi vaves
putc write [KB/sec] 28386 20425 22525 22027
write [KB/sec] 42296 35844 41943 43551
rewrite [KB/sec] 12060 7806 7329 7660
getc read [KB/sec] 19370 8549 16437 15883
read [KB/sec] 38206 11294 33913 31543
seek [/sec] 113.3 103.0 103.0 53.0
seq. create [/sec] 32314 7639 7898 1492
seq. stat [/sec] >32768 >32768 >32768 157
seq. delete [/sec] >32768 13059 12747 330
rand. create [/sec] >32768 7761 7656 1379
rand. stat [/sec] >32768 >32768 >32768 165
rand. delete [/sec] >32768 12617 11639 328

Table 6.2: Throughput of operations on ext3 with dirindex

53

disk fusexmp fsfipi vaves
putc write [KB/sec] 27765 19685 22501 22844
write [KB/sec] 42472 40690 44443 42823
rewrite [KB/sec] 12096 7665 7796 7832
getc read [KB/sec] 17025 15497 15555 16061
read [KB/sec] 36931 31525 33567 30676
seek [/sec] 151.6 118.4 115.7 61.2
seq. create [/sec] 20887 6738 6744 395
seq. stat [/sec] >32768 >32768 >32768 615
seq. delete [/sec] 17333 8440 8234 274
rand. create [/sec] 19778 6661 6374 404
rand. stat [/sec] >32768 >32768 >32768 558
rand. delete [/sec] 15127 8054 7755 209

Table 6.3: Throughput of operations on reiserfs

disk fusexmp fsfipi vaves
putc write [KB/sec] 25758 17534 15272 15632
write [KB/sec] 39769 33353 39449 31201
rewrite [KB/sec] 11654 8480 7100 6894
getc read [KB/sec] 11369 7568 11264 11876
read [KB/sec] 15813 9490 21752 22846
seek [/sec] 132.6 93.7 112.5 48.7
seq. create [/sec] 17987 6136 4120 303
seq. stat [/sec] >32768 >32768 24055 1029
seq. delete [/sec] 13386 5535 4804 164
rand. create [/sec] 17290 6046 4351 311
rand. stat [/sec] >32768 >32768 30360 1022
rand. delete [/sec] 11993 6642 4681 116

Table 6.4: Throughput of operations on non-empty reiserfs

54

And for the comparison, how the filesystem influence this performance.

ext3 diri- ext3 diri+ reiserfs used reiserfs
putc write [KB/sec] 27085 28386 27765 25758
write [KB/sec] 43894 42296 42472 39769
rewrite [KB/sec] 12735 12060 12096 11654
getc read [KB/sec] 19832 19370 17025 11369
read [KB/sec] 40594 38206 36931 15813
seek [/sec] 130.4 113.3 151.6 132.6
seq. create [/sec] 1514 32314 20887 17987
seq. delete [/sec] >32768 >32768 17333 13386
rand. create [/sec] 1287 >32768 19778 17290
rand. delete [/sec] 3345 >32768 15127 11993

Table 6.5: Throughput of operations directly on filesystem

ext3 diri- ext3 diri+ reiserfs used reiserfs
putc write [KB/sec] 22380 22027 22844 15632
write [KB/sec] 39567 43551 42823 31201
rewrite [KB/sec] 7531 7660 7832 6894
getc read [KB/sec] 15441 15883 16061 11876
read [KB/sec] 27782 31543 30676 22846
seek [/sec] 49.6 53.0 61.2 48.7
seq. create [/sec] 30 1492 395 303
seq. stat [/sec] 2415 157 615 1029
seq. delete [/sec] 1632 330 274 164
rand. create [/sec] 30 1379 404 311
rand. stat [/sec] 104 165 558 1022
rand. delete [/sec] 206 328 209 116

Table 6.6: Throughput of operations with vaves

55

disk
fusexmp
fsfipi
vaves

putc write read&seek&write getc read
0

10 000

20 000

30 000

40 000

50 000
K

B
/s

ec

Figure 6.1: Troughput of file i/o operations on ext3 with dirindex

disk
fusexmp
fsfipi
vaves

seq. create rand. createseq. stat rand.stat rand. deleteseq. delete

op
er

at
io

ns
/s

ec

0

10 000

20 000

30 000

Figure 6.2: Troughput of directory operations on ext3 with dirindex

6.3 Interpretation

The throughput of fusexmp and fsfipi is almost the same (Mostly, fsfipi is a
little better, sometimes fusexmp is better). Comparing them both with the
operations directly on filesystem, the file input and ouput does need almost
the same amount of disk operations, but requires more CPU time, that is
why when the CPU is busy doing putc() operations the throughput of them
is that slower than on the filesystem itself. Even the block read operations
and seeks are much slower, but generally not less than of a half. Directory

56

operations of fuse virtual filesystems are about three to five times slower
than directly on a filesystem with non-sequential search in directory (in the
case of the filesystem with sequential search, the difference is naturally not
so big).

Vaves file i/o operations are comparable to those of the fuse filesys-
tems alone (this is because the test opens the file only once, and then only
reads/writes), mostly only a bit slower. The directory operations however
are much slower, than directly, in particular from 5 times to 50 times in
case of create and unlink operations, even several hundereds times in case
of calling stat. The reason is simple: Normally only one file is searched and
many directory data is cached, but in vaves first the contents file is searched,
then its data block is read (which is not in the cache), then the metadata of
major version must be read, and then the ‘fake inode’ of the minor version
(in the case of stat). In short, many files are searched, read, created or
removed respectively. Even in the case of only getting the attributes of a
file, which is normally very quick operation.

The benchmark naturally did not measure the speed of operations with
versions because it would require a special benchmarking tool and one could
not compare the results with anything anyway. I can say that it would
not be much slower, because the number of files to be read is the same
or sometimes even less (contents file does not have to be read for version
reading operations). Accessing versions is supposed not to be used so often
as accessing regular files anyway.

57

Chapter 7

Conclusion

I succeeded to implement the versioning system core in userspace. It is very
well configurable, but its main drawbacks are the low speed of file open
operations, and the inability of using multiple threads and for some people
also the lack of atomic operations and the fact, that all the versions are
stored completely.

These remain challenges to the future. The system could be speeded up
with low cost, if we do not use minor versions, there may be a setting in
the future for disabling minor versions. Another increase of the speed could
be reached if we merge the storage of the version metadata and the data
to one real file or if the metadata of all versions were stored in one file, so
that much less files would have to be opened, but this would be at the cost
of losing the transparency. Another way of increasing the speed would be
if the version names were not so configurable so the name of the logical file
would be determined without reading the metadata file and if the metadata
for versions were not necessary (but we would lose the information, when
the version was deleted). Then a hard link to the newest version of a file
would be possible, which could speed up access to the newest version.

In my humble opinion, the fsfipi framework, which I made as well, will
have better future, than the versioning system vaves itself.

58

Bibliography

[1] Hewlett Packard.
Guide to OpenVMS File Applications,
OpenVMS systems documentation edition, 2002.
Electronic version at
http://h71000.www7.hp.com/doc/os82 index.html
or a copy at
http://cs.felk.cvut.cz/vms82/.

[2] Brian Schenkenberger.
OpenVMS File System Internals.
Digital Press, Dec 2003.
ISBN: 1555582699.

[3] RFC 3284 - The VCDIFF generic differencing and compression data
format.
http://www.faqs.org/rfcs/rfc3284.html.

[4] Miklos Szeredi.
Fuse homepage.
http://fuse.sourceforge.net/.

59

http://h71000.www7.hp.com/doc/os82_index.html
http://cs.felk.cvut.cz/vms82/
http://www.faqs.org/rfcs/rfc3284.html
http://fuse.sourceforge.net/

Used software

I used gcc compiler, kdevelop development environment (which uses gdb
debugger), bonnie++ benchmarking tool, different versions of fuse, as it
was developed (from some 1.x to 2.4; current code will run under 2.4),
bash (running the scripts) and posh (testing POSIX compliance of scripts),
GNU core utilities. And many more software not directly influencing the
work like Konsole (running scripts, testing filesystem, etc.), Krusader, KDE,
Linux kernel and the whole Debian GNU/Linux operating system.

I used LATEXand its front-end Kile for writing this text, gnumeric for
plotting the graphs and inkscape for creating the figures.

60

	Introduction
	Theory
	Possible approaches
	How to present the versions to the user
	Where to implement version system
	Implementation

	Existing versioning solutions
	OpenVMS
	FreeVMS
	CopyFS
	Version control systems
	XDelta

	Virtual file system frameworks
	LUFS
	FUSE
	PlasticFS

	Analysis
	Discussion of the design
	How to implement the versioning system

	The Fsfipi framework
	Standard fsfipi filters

	Vaves, a fsfipi module for making versioned filesystem
	Types of changes of files
	Information to be stored
	The directory structure
	Removing version, files, and directories

	Implementation
	Fuse
	User's point of view
	Programmer's point of view

	The Fsfipi framework
	How does it work
	The interface

	Standard fsfipi modules
	Vaves
	Issues
	Source files
	Data structures
	Internal functions
	How does the filesystem functions work

	Tests
	The seek and write test
	The filesystem test
	The test of vaves specifics
	The Bonnie++ benchmark
	The FS_INOD test from the LTS

	Benchmarks
	What and how it was measured
	Results
	Interpretation

	Conclusion
	Bibliography
	Appendixes
	Used software

